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ABSTRACT 

The paper  presents  a  rover  execution architecture for 
controlling  multiple,  cooperating  rovers.  The overall goal 
of this  architecture is to coordinate multiple rovers  in 
performing  complex tasks for planetary science. This 
architecture integrates  a  number of systems and research 
efforts on single  rovers and extends  them  for multiple 
rover  operations.  Techniques from a number of different 
fields are utilized, including AI planning  and scheduling, 
real-time systems and simulation, terrain modeling and 
system  kinematics/  dynamics,  and AI machine learning. 
We  discuss  each  architecture  component  and describe a 
geological  scenario  we  are using to evaluate the overall 
architecture. 

1 .  INTRODUCTION 

This  paper describes an integrated architecture being 
developed at the  NASA Jet Propulsion Laboratory for 
utilizing multiple cooperating rovers. The overall goal of 
this task is to coordinate multiple rovers in performing 
complex tasks for  planetary  surface  exploration. Utilizing 
multiple rovers  has  a  number of advantages. First, we can 
greatly increase mission  science  return by simultaneously 
using  complementary  instruments  on different rovers and 
efficiently  dividing  science gathering tasks between the 
rovers.  Second,  multiple  rovers  can  perform tasks that 
otherwise would not be possible using a  single  rover.  For 
instance, multiple rovers  could  be used to take wide 
baseline stereo  images (where at least two rovers are 
required)  and  rovers landed at different locations could 
cover  areas  with  impassable  boundaries that would be 
unreachable by a  single rover. Third, multiple rovers 
would  enhance  mission success through increased system 
redundancy.  If  one rover fails, then its tasks could be 
quickly  taken over  by another rover, helping to ensure 
mission success. 

This  paper  describes  work  in demonstrating how multiple 
rovers  as  compared  to  a  single rover can more effectively 
explore  a selected site and return more science data per 

communication cycle. The  described  architecture utilizes 
research results on single  rovers (i.e. command  sequence 
generation, navigation, control,  science  operations, 
ground control, etc.) from TEUWG and  the  general 
research community  and  extends  them to multiple  rovers. 
An integrated system architecture has been developed that 
can automatically plan for and coordinate multiple rover 
activities, and monitor and update activities in response to 
anomalous events, and automatically generate interesting 
science goals. This architecture also  utilizes a multi-rover 
simulation environment  and  control  software from the 
NASA JPL Rocky  7  rover  [Volpe  et al., 1997, Hayati & 
Arvidson, 19971. Techniques from several  different 
fields are  combined including Artificial  Intelligence  (AI) 
planning and scheduling,  real-time  systems  and 
simulation, terrain modeling  and  system kinematics1 
dynamics, and AI machine learning. 
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following. An AI plann~ng and schedultng systt'm 
(CASPER) takes as input a set of sclence goals for 
exploring a particular terrain and then automatically 
generates plans (i.e. command  sequences) that coordinate 
several rovers in successfully completing the goals  and 
exploring the requested areas. The final  plan is relayed  to 
a multi-rover simulation  environment  (ROAMS) that is 
used to simulate the  rover  terrain  and  rover  operations 
within that environment.  The  simulator  also generates 
sensor feedback  from the rovers which is relayed back to 
the planner. This feedback is utilized to determine the 
success or failure of certain activities and any changes I n  

resource or states. If unexpected  changes have occurred, 
the planning  system can perform  re-planning to fix the 
original plan  and  ensure the successful  achievement of the 
goals. Other relevant pieces of the architecture  include an 
AI clustering algorithm which generates  science  goals 
based on  geology observations, and a  machine 
learninghounds estimation  system  which  provides 
resource modeling for the planner.  This  paper  will 
concentrate on describing the planning  system and multi- 
rover simulator. This architecture is currently being 
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evaluated  using  a  geological  scenario  where  rovers are 
used  to  examine  and  classify  terrain  rocks. 

The  remainder  of  this  paper is organized  as  follows. We 
begin by characterizing the multiple  cooperating  rovers 
application  domain and describing one particular  science 
scenario.  Next, we present out multi-rover  execution 
architecture  which  controls  and  coordinates  operations  for 
a  team  of  rovers  and  describe  each of its components.  In 
the  final  sections, we discuss  related  work,  planned  future 
work,  and  present  our  conclusions. 

2. COOPERATING  ROVERS  FOR SCIENCE 

Utilizing  multiple  rovers  on  planetary  science  missions 
has several main advantages: 

F o / w  /nult i~~lic~trtion. Multiple rovers can collect 
more data than a slngle rover and can perform certain 
types of tasks  more  quickly than a  single  rover,  such 
as:  performing  a  geological  survey  of  a  region or 
deploying  a  network  of  seismographic  instruments. 
We call  these cooperative tasks. 
Simultaneous  presence. Multiple  rovers  can  perform 
tasks  that  are  impossible  for  a  single  rover. We call 
these coordinated tasks.  Certain  types of instruments, 
such as interferometers,  require  simultaneous 
presence  at  different  locations.  Rovers  landed  at 
different  locations  can  cover  areas  with  impassable 
boundaries.  Using  communication  relays,  a line of 
rovers can reach longer  distances  without loss of 
contact.  More  complicated  coordinated tasks can  also 
be accomplished,  such as those  involved in hardware 
construction  or  repair. 
System  redundancy. Multiple  rovers  can be used  to 
enhance  mission  success  through  increased  system 
redundancy.  Several  rovers  with  the  same  capability 
may  have  higher  acceptable  risk  levels,  allowing one 
rover,  for  example, to venture  farther  despite the 
possibility  of  not  returning.  Also,  because  designing 
a single  rover to survive a harsh  environment  for  a 
long periods of time can be difficult, using multiple 
~.o\.ers mav enable mlsslons that a single rover could 
n o t  5111 \ I \  t' long enough t o  accomplish. 

In all cases, the rovers  can behave in a cooperative or 
even  coordinated  fashion,  accepting  goals  for  the  team, 
performing  group  tasks  and  sharing  acquired  information. 

Coordinating  distributed  rovers  for  a  mission  to  Mars  or 
other  planet  introduces  some  interesting  new  challenges 
for  the  supporting  technology.  Issues  arise  concerning 
interfaces,  communication,  control  and  individual  on- 
board  capabilities.  For  example,  different  software 
components  must  successfully  interface  onboard  the 
rovers to provide  the  needed  autonomous  functionality. 
In additlon, mission designers will  need to decide on 

interfaces  among  the  rovers, to the  lander  and/or  orbiter 
and to the  ground  operations  teams.  Decisions  will  need 
to be made on  communication  capabilities,  which  will 
limit  the  amount  of  information  shared  between  rovers 
and the  landedorbiter. A distributed  control  protocol  will 
need to be selected  that  defines  how  tasks  are  distributed 
among rovers and what  the  "chain of command"  is. 
Finally,  the  onboard  capabilities  will  need to be 
considered,  including  computing  power  and  onboard 
data-storage  capacity. 

Many of these  design  decisions  are  related,  and  all  of 
them  have an impact on the  onboard  technologies  that  can 
be utilized by the  mission. The interfaces  determine  what 
activities  can  be  planned  for  each  rover  and what data  or 
sensor  feedback  can be utilized  by  the  onboard  software. 
The  amount  of  communication  available  will  determine 
how much science or terrain data can be shared  among 
rovers and will affect  how  much  each  rover  can 
coordinate  with  other  rovers to perform  tasks.  In 
addition,  communication  capabilities  will  affect  the 
amount of onboard  autonomy  required.  If  bandwidth  is 
low and  reaction  time  is  critical,  a  rover  will  need  to  react 
intelligently  to the environment,  including  performing 
intelligent  navigation  and  replan its own  activities  in 
response  to  unexpected  events. The control  scheme  will 
determine  what  rover  executes  certain  activities  and  some 
rovers  may  coordinate  and  monitor  and  activities  of 
others.  Decisions  on  the  onboard  capabilities  of  each 
rover  limit the independence  of  the  rover.  With  only  little 
computing  power,  a  rover  may  only  be  able  to  execute 
commands.  More  power  may  allow  it  to  plan  command 
sequences,  replan if necessary,  analyze  gathered  data,  and 
determine  new  interesting  science  goals.  Some  rovers 
may  also  perform  these  activities  as  a  service  to  other 
rovers or in  cooperation  with  them. 

To evaluate  the  architecture  present  in  this  paper, we have 
initially  chosen  the  configuration  of  a  team  of  three 
identical  rovers  where  each  rover  has  a  planning  and 
learning  onboard as well  as  low-level  control  software  for 
tasks such as navigation  and  vision.  Each  rover  can  thus 
plan for its assigned  goals,  execute  and  monitor  generated 
commands,  collect the required  data,  perform  re-planning 
if necessary,  and  perform  science  analysis  onboard to 
direct its future  goals. 

Currently we are  evaluating  our  framework by testing its 
ability to build  a  model of the  distribution  of  surrounding 
terrain  rocks,  classified  according  to  composition  as 
measure  by  a  boresighted  spectrometer.  Science  goals 
consists  of  requests to take  spectral  measurements  at 
certain  locations  or  regions.  These  goals  are  prioritized 
so that if necessary low priority  goals  can be preempted 



version of the ASPEN  system [Fukanaga et al., 19971, 
that has been developed to address dynamic planning and 
scheduling applications. CASPER employs techniques 
from AI planning and scheduling to automatically 
generate the necessary rover-activity sequence to achieve 
the input goals.  This  sequence is produced by utilizing an 
iterative repair  algorithm [Minton and Johnston, 1988; 
Zweben,  et al., 19941 which classifies conflicts and 
attacks them  each individually. Conflicts occur when a 
plan constraint has  been violated where this constraint 
could be temporal or involve a  resource, state or activity 
parameter. Conflicts are resolved by performing one or 
more schedule modifications such as moving, adding or 
deletlnp an  actlvlty Examples of confllcts are a rover 
I h a l  1 5  a l  111c Incortt'ct Iocatron  for a scheduled science 
actl t  Ity oI havlng too many actlvltles scheduled for one 
rover, whlch oversubscribes its power resources. Figure 2 
shows an example  rover-plan displayed in the CASPER 
GUI interface. 

To support  mission  with multiple rovers,  we developed a 
distributed planning  environment where it is assumed 
each  rover  has an onboard  planner.  This allows rovers to 
plan for themselves andor for  other rovers. And, by 
balancing the workload, distributed planning can be 
helpful when individual computing resources are limited. 
Our approach to this problem was to include a CASPER 
contlnuous planner for each rover, In addition to a central, 
batch planner. 

The central  planner  develops an abstract plan  for all 
rovers, while each agent  planner  develops  a detailed 
executable  plan  for  its own activities. The central planner 
also acts as  a router, taking a  global set of science goals 
and dividing it up among the separate rovers. For 
example,  a  science  goal  may request an image of a 
particular rock without concern for which rover acquires 
the image. The central planner could assign this goal to 
the tover that IS closest t o  the  rock i n  order to minimize 
the traversals of all rovers. Thls master slave approach is 
Just one  approach to distributed planning which could be 
utilized  for  this  architecture;  we are also experimenting 
with  several  other  forms of distributed planning 
[Rabideau, et al., 19991. 

In order  to  enhance the quality of the produced schedules, 
we  have  implemented heuristics for assigning rovers to 
goals  and  for  deciding on the order in which to visit each 
of the specified locations. The heuristics borrow from 
algorithms for finding solutions to the Multiple Traveling 
Salesman Problem (MTSP) [Johnson et ai., 19971. With 
nlultlple rovers coterlng the same area, the planner 
prefers paths that mlnlmze the total traverse time of all 
the rovers. 

Figure 2: Example Rover Plan 

To achieve a high level of responsiveness  for  each 
onboard rover planner, we also utilize a  continuous 
planning approach. Rather than considering  planning  a 
batch process in which  a  planner is presented with goals 
and an initial state, each rover planner  has  a  current  goal 
set, a  current state, a current plan, and state  projections 
into the future for that plan. At any time, an incremental 
update to the goals or current  state may update the current 
plan. This update may be  an unexpected event or simply 
time progressing forward. Each onboard  planner is then 
responsible for maintaining a plan consistent with the 
most current information obtained from the  rover  sensors 
and low-level control software. The  current  plan is the 
planner's estimation as  to  what it expects  to  happen in the 
world if things go as expected. However, since  things 
rarely go exactly as  expected,  the  planner  stands  ready  to 
continually modify the plan to bring the plan  back  into 
sync with the actual rover state. 

3.2 ROVER CONTROL SOFTWARE 

To handle low-level rover control issues, we have utilized 
the Onboard Rover Control & Autonomy Architecture 
(ORCAA) software developed for the Rocky 7 rover 
[Volpe et al., 1997, Hayati 8c Arvidson, 19971. In the 
ORCAA software, asynchronous  rover activities are 
initiated by a queue of rover commands.  These activities 
are represented using asynchronous  finite state machines 
(FSMs) and synchronous data-flow control loops. When 
the rover receives a  command  sequence, these commands 
cause state transitions in one of three main state 
machines: Navigation, Vision and Manipulation.  For 
example, in the Navigation  FSM, possible states include 
"Idling",  "Steering",  "Driving", etc. State transitions in 
these FSMs are used to run different execution  methods 
and are often used to begin the execution of synchronous 



Figure 1 : Multi-rover Execution Architecture 

(e.g. due to low  battery  power). Science goals are divided 
among  the three rovers.  Each rover is identical and is 
assumed  to have a  spectrometer  onboard  as well as other 
resources  including  a  solar  panel that provides power for 
rover activities, and a  battery  that  provides  backup power 
when  solar  power is not available. The battery can also 
be  recharged  using the solar panel when possible. 
Collected science data can  be transferred to an orbiter 
where it is stored  in  memory. 

3 .  MULTI-ROVER  EXECUTION ARCHITECTURE 

The  overall  system  architecture is shown  in Figure 1. The 
system is comprised of the following  major  components: 

Planning: A  dynamic, distributed planning  system 
that  produces  rover-operation  plans to achieve input 
rover  science  goals. Planning is divided  between  a 
central  planner,  which  efficiently divides up science 
goals  among  rovers,  and  a distributed set of planners 
which  plan  for  operations  on an individual rover and 
can perform  re-planning if necessary. 
Rover  Control  Software: Control software from the 
NASA JPL  Rocky 7 rover that handles execution of 
low-level  rover  commands  in the areas of navigation, 
vision and manipulation. This software performs 
low-level  monitoring  and  control of each  rover's 
subsystems. 
Multi-Rover Real-Time Simulator: A multi-rover 
simulation  environment that is used to  simulate the 
planetary  terrain  and multi-rover operations within 
that  environment.  This simulator models rover 

kinematics and  generates  sensor  feedback  which is 
relayed back to each  rover  planner. 
Data Analysis: A distributed machine  learning 
system  which  performs  unsupervised  clustering to 
model the distribution of rock types  observed by the 
rovers. This dlstl-lbutlon I S  used for priol-lt171ny 11e~ 
targets f01- cxplorat~on by lllc ro\c1-5 1'111\ I \  

used to direct I.o\'el to cont~nuallq ~ m p ~ o \ ~ p  t i l l \  

model of the scientific content of the planetary scene 
Science Simulator: A multi-rover science simulator 
that models different geological  environments and 
rover science activities within  them.  The 
environment  simulator  manages  science  data  for the 
current terrain, tracks rover operations  within that 
terrain, and reflects readings by rover  science 
instruments. 

The overall system operates in a closed-loop  fashion. 
Science goals (e.g. take a  spectrometer reading at a 
certain location) are given to a central  planner which 
assigns them to individual  rovers  in  a  fashion that will 
most efficiently serve the requests.  Each  rover  planner 
then produces  a set of actions  for that rover  which will 
achieve as many of its assigned  goals  as  possible.  These 
action sequences  are  executed  using  the  rover  low-level 
control software  and  a  multi-rover  hardware  simulation 
environment  which relay action and  state  updates  back  to 
each  onboard  planner.  If necessary, each  onboard  planner 
can perform re-planning when unexpected  events or 
failures occur. 

Action sequences are also executed wlthln the 
environment simulator and any gathered data is sent to 
the rover data analysis modules.  These  modules  form 
local models that are broadcast  to  the  central analysis 
module. This module forms a global  model of the data 
and generates a new set of observations  goals that will 
further improve the accuracy of the  model. In this way, 
the data analysis system  can be seen  to  take  the  role of the 
scientist driving the exploration  process.  New  goals  are 
then sent to the centralized  planner  and  he  overall  cycle 
continues until enough data is gathered  to  produce distinct 
models for any observed rock types. 

In the next few sections, we discuss  each of the 
architecture components  in  more detail. 

3.1 DISTRIBUTED,  CONTINUOUS  PLANNING 

To produce  individual  rover  plans  for  a  team of rovers, 
we  have  developed  a distributed planning  environment 
utilizing the CASPER continuous  planning  system [Chien 
et al., 19991. CASPER (Continuous Activity Scheduling, 
Planning Execution and Replanntng) I S  a n  cutcnded 



Figure 3 : Three rovers in sample terrain 

processes, which  perform  monitoring and control of the 
Rover's  subsystems. 

This  software also relays sensor information and 
command  updates  back to the overlying planning system. 
This  information  includes  command updates such  as 
whether  a  command  was successfully executed  and sensor 
values such  as  the  current sun angle or level of battery 
power. 

3.3 MULTI-ROVER  REAL-TIME  SIMULATION 

In order  to  accomplish preliminary testing of this 
architecture, a  real-time simulation environment has been 
developed  using the DARTSIDSHELL software 
[Biesiadecki, Henriquez & Jain, 19971. The Rover 
Analysis  Modeling and Simulation  (ROAMS) [Yen et al., 
19991 extension of  DARTSDSHELL was first slated 
towards  modeling  single-rover  operations  and is based on 
the NASA  JPL  Rocky  7  Mars  rover. Currently, the 
simulator  rover  model is comprised of its mechanical, 
electrical, and  sensor subsystems, and is connected with 
the on-board  (Rocky 7) software. Several terrain models 
have  been  incorporated  and we have developed solution 
techniques that  permit  a real-time simulation of the rover 
traversing a Mars-like terrain on  a workstation platform. 
An example  situation involving three rovers is shown in 
the ROAMS  interface  in Figure 3. 

The  basic  component of the simulator is the solution of 
inverse  kinematics for the rover traversing a Mars-like 
terrain. Building on this novel solution technique, we 
have applied the ROAMS  rover simulator to testing 
Rocky 7 on-board  software.  The  control  and navigation 
algorithms of the  control  software  are used to drive the 
Rocky 7 rover model against a  terrain with randomly 
distributed rocks.  Applying the DARTS/DSHELL 
methodology,  we implemented models for hardware 
devices, such as  a  panoramic spectrometer, sun sensor, tilt 

sensor, obstacle detection camera,  solar  panel,  battery, 
etc., to feed the subsystems. Also, based on the  numerical 
solution of inverse kinematics,  the  hardware  instrument 
models provide  high-fidelity  synthetic  data to test the 
control and navigation code.  Overall, this environment 
permits a fast and better design and implementation of the 
rover's software subsystem. 

For the multiple rover architecture, this single-rover 
simulation model has been  extended  to  support  several 
cooperating rovers. For this purpose,  we  developed 
additional hardware models,  including  a  collision 
avoidance  model, an obstacle  detection  model,  models of 
power units, and the capability for  running multiple 
rovers in ROAMS. Due to the stability and accuracy of 
the numerical solution, these device  models can provide 
high quality sample data for the ASPEN  planning  system. 
For example, the power source of Rocky 7, including a 
solar panel and a battery, can pl-oduce accul-ate reading of 
the power level due to the prediction of the panel's 
attitude and the wheel's motor output. As explained 
above, these and  other  sensor values can  be fed back to 
the planner so that  for  each  rover  a valid command 
sequence can  be  consistently  maintained. In this paper 
we will focus  on the collision  avoidance  model, the 
obstacle detection camera  model, and the models of 
power units. 

3.5 SCIENCE-DATA ANALYSIS 

To perform sclence ana lys~s .  ~e LIS< a nmch ln~~- I ra l  n11lg 

system whlch performs unsupervlsed clustering 10 model 
the distribution of rock types in the observed terraln 
[Estlin, et al., 19991. Clustering is performed by a 
distributed algorithm where  each  rover  alternates  between 
independently performing learning computations  using its 
local data and  updating  a  global-distribution  model 
through  communication  among  rovers. The model used 
for this distribution is a  simple  K-means-like 
unsupervised clustering model,  where  each cluster 
represent a different rock type in the sensor  space. 
Currently, each sensor reading is a spectral nxasurement 
returning values at 14 wavelengths; learnlng takes place 
in the full 14-dimensional continuous  space.  A sample 
cluster model  (shown for 2 of 14 dimensions) is shown in 
Figure 4. 

After a  new  set of science readings is acquired,  each  rover 
sends  a  small set of parameters,  which  summarizes its 
local data, to the central  clusterer. The central  module 
then integrates this data into an update  global  model  and 
broadcasts that model to all rovers  in the system.  This 
process continues iteratively until convergence. 
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Figure 4: Example spectra-feature space 

Output clusters are also used to help evaluate visible 
surfaces  for  further  observation based upon their 
"scientific interest." Specifically, the system tries to 
increase the accuracy of the clustering model by obtaining 
data readings in regions that are likely to improve the 
model. F.ach update of the global clustering model 
tlctet-mll1t.s a ncu set 01' interesting science goals, i.e. 
planetary locations to be explored by the rovers. These 
observation goals are then sent as formal goals by the 
learner to the planner.  Thus, the science analysis system 
can be viewed as  driving the science process by analyzing 
the current  data  set  and  then  deciding  what new and 
interesting observations  should  be made. 

3.5 SCIENCE  SIMULATOR 

A science simulator designed for this particular geological 
scenano provides data for the science analysis system by 
slmulatlng the data gathering actlvlties of the rover. 
Dlfterent MartIan rockscapes are created for use  in the 
simulator by using distributions over rock types, sizes and 
locations. The  size  and  spatial distributions of the 
rockfield where  developed by examining distributions of 
rocks  observed by the Viking Landers, Mars Lander  and 
Mark  Pathfinder.  The distribution of minerals that can 
occur in rocks was developed  in collaboration with 
planetary geologists at JPL, and the spectra associated 
with rocks are  generated  from the spectra of the 
component minerals via a linear-mixing model. When 
science measurements are requested from a terrain during 
C \ C C I I I I O I I .  i-ock and  nunt'i-al spectral models are used to 
generate sample spectra based  on  the type of  rock being 

observed. This data is then  communicated  to the relevant 
rover science-analysis module. 

4. RELATED WORK 

While there has  been  a significant amount of work on 
cooperating robots, most of it focuses on behavioral 
approaches that do  not explicitly reason  about  assigning 
goals and planning courses of action.  One  exception is 
GRAMMPS [Bummitt and  Stentz, 19881, which 
coordinates multiple mobile robots visiting locations in 
cluttered, partially known  environments.  GRAMMPS 
also has  a low-level planner  on  each  robot,  however it 
does not look at multiple resource or exogenous  events. 

Many cooperative robot systems utilize reactive planning 
techniques [Mataric, 1995; Parker, 19991. These systems 
have been  shown  to  exhibit  low-level  cooperative 
behavior in  both  known  and "noisy" environments. 
However, these systems have not  been  shown  useful  for 
mission planning where a  high-level  set of science  and 
engineering goals must be achieved in  an efficient 
manner. 

5. FUTURE WORK 

We have a number of planned extensions to this work. 
First, we intend to extend the overall  architecture  to  be 
more robust and  able to handle rover failure situations. 
For instance, if a rover fails, the distributed  planning 
system  should recognize this failure  (e.g. the rover  has 
not responded  for  a certain amount of time), refrain from 
sending any new goals to that rover,  and  re-assign  any 
current goals assigned to that rover. 

We plan  to increase the fidelity of the  simulation by 
adding models of onboard  cameras  and  other instruments, 
and extending the simulator to model  communication 
between each rover. Currently, it  is assumed  rovers share 
science data through the central data-analysis model, 
however this communication is not  explicitly represented 
in the simulator. We would also like rovers to share  plan 
information which would allow  them  to directly 
coordinate with  each  other  during  plan  execution,  and 
would allow us to experiment  with different forms of 
distributed planning which require communication among 
agents. These extensions will  allows  for  more realistic 
testing of the architecture. 

We also plan to extend the multi-rover  simulator  and 
planning model to represent more extensive 
communication between each  rover. Currently, rovers 
share science data through the central data-analysis 



module. We would  like  rovers to also share plan 
information.  This  would  allow  rovers to directly 
coordinate  with  each  other  during  plan  execution  and 
would  enable  us  to  experiment  with  different  forms of 
distributed  planning,  such as team-based  strategies 
[Tambe, 19971 or  market-based  approaches  [Sandholm, 
19931 to  multi-agent  coordination. 

Last, we plan  on  testing  the  overall  architecture  in  a  more 
realistic  setting  using  actual  rovers as opposed to the 
hardware  and  science  simulators  described  previously. 
This  testing  will  occur  in  the JPL Mars yard using rovers 
such as JPL’s  Rocky  7  and  Rocky 8. 

6. CONCLUSION 

In  conclusion,  using  multiple  rovers  can  greatly  increase 
the  capabilities  and  science  return of a  mission. In this 
paper we have  presented  an  integrated  architecture  that 
combines  techniques  from  several  fields to effectively 
plan  for  and  coordinate  rover  activities,  execute  these 
activities  in  a  real-time  environment  simulator,  monitor 
rover-execution  status,  and  effectively  respond to 
unexpected  events  through  re-planning.  This  integrated 
system  exhibits  great  potentials  for  advanced  applications 
in  areas  of  design,  engineering,  and  distributed  planning 
for  mobile  robotic  systems. 
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